

NabadwipVidyasagar College

Department of Environmental Science

Under Graduate Programme Programme Outcome (PO) and Course Outcome (CO)

Program Outcome (PO):

- Investigate the complexities of the natural environment and our relationship with it.
- Explore the problems we face in understanding our natural environment and in living sustainability.
- Develop scientific, interpretive and creative thinking skills.
- Learn to apply quantitative analysis and field research techniques.
- Learn geographical information systems to study environmental change.

Lear	Learn geographical information systems to study chymolinicital change.				
Semester	Course Code-&	Course Content	Course Outcome (CO)		
Semester	Title	Course Content	Course Outcome (CO)		
I	Title UG-ENVS-H- CC-01- Earth And Earth Surface Processes	 Unit-1- History of Earth Formation of the Earth: formation and composition of core, mantle, crust, atmosphere and hydrosphere; Chemical composition of earth; geological time scale and major changes on the earth's surface; Holocene and the emergence of humans, role of humans in shaping landscapes; Development of cultural landscapes. 	CO 1. Create in student's ability to understand about changes in Earth's history with time. CO 2. Students will be able to analyze formation of Solar System, Earth, Atmosphere and Hydrosphere through study of Solar System and history of Earth.		
		Unit-2- Earth System Process	CO 4. Students will be able to analyze role of Plate Tectonics		
		• Movement of lithosphere plates; mantle convection and plate			

		CO F C: 1 : '111 1 :: 1
	onics, major plates and hot spots,	CO 5. Students will learn about the process of continental drift
plate	boundaries; sea floor spread;	and volcanic activity.
• Eartl	nquakes; volcanic activities;	
orog	eny;	
_	inental drift, Pangaea and	
prese		
1	ontological evidences of plate	
	_	
	onics; continental collision and	
	ntain formation with specific	
exan	nple of the Himalaya.	
UNIT-	3- Minerals And Rocks	CO 6. Students will be able to Evaluate the role of different
• Mine	erals and important rock forming	types of Rocks in Rock Cycle
mine	erals;	CO 7. Students will learn about the rock structures and types
• Rock	cycle: lithification and	CO 8. Students will learn the significance of Weathering and
meta	morphism; Three rock laws;	
	s structure, igneous, sedimentary	Erosion over Earth Surface
	metamorphic rocks;	
	-	
	thering: physical,	
	eochemical processes;	
	ion: physical processes of	
erosi	on, factors affecting erosion;	
• Agei	nts of erosion: rivers and	
	ms, glacial and aeolian	
	portation and deposition of	
	nents by running water, wind	
	glaciers.	
	- Earth Surface Process	CO 8. Students will learn about the atmospheric evolution and
	osphere: evolution of earth's	atmospheric composition.
atmo	osphere, composition of	

	 atmosphere, physical and optical properties, circulation; Interfaces: atmosphere—ocean interface, atmosphere—land interface, ocean—land interface; Land surface processes: fluvial and glacial processes, rivers and 	CO 9. Students will learn about the interface, ocean—land interface; atmosphere—ocean interface, atmosphere—land CO 10. Students will learn about the geomorphology and glacier geomorphology.
	geomorphology; types of glaciers, glacier dynamics, erosional and depositional processes and glaciated landscapes; coastal processes. UNIT-5- Importance Of Being	
	 Mountain Formation of Peninsular Indian mountain systems - Western and Eastern Ghats, Vindhyas, Aravallis, etc. Formation of the Himalaya; Development of glaciers, perennial river systems and evolution of monsoon in Indian subcontinent; Formation of Indo-Gangetic Plains. 	mountains, most importantly Himalaya CO 12. Students will learn about the formation of Indo- Gangetic Plains
ENVS-H-CC-P - 01- Practical	 Hand specimen: rocks and minerals Microscopic studies of thin section of rock and minerals. Topographical sheet interpretation 	CO 13. Students will have hands on experience about the rock types, mineralogy and topographic map interpretation.
UG-ENVS-H- CC-02- Environmental	Unit-1- Fundamental Of Environmental Chemistry	CO 14. Students will learn about the basics of physical chemistry relating to atomic structure and chemical bonds.

Ch	em	istr	y a	and
En	vir	onn	ner	nta
	Pł	ıysi	ics	

- Atomic structure, electronic configuration, periodic properties of elements (ionization potential, electron affinity and electronegativity),
- Types of chemical bonds (ionic, covalent, coordinate and hydrogen bonds), mole concept, molarity and normality, quantitative volumetric analysis.
- Thermodynamic system; types of chemical & reactions products; solutes and solvents; redox reactions, concepts of pH equation, electrochemical cells.
- Basic concepts of organic chemistry, hydrocarbons, aliphatic and aromatic compounds, organic functional groups, polarity of the functional groups, xenobiotic compounds like pesticides and dyes, synthetic polymers.

CO 15. Students will learn about different thermodynamic systems in chemical reactions.

CO 16. Students will learn about the basic concepts of organic compounds and groups.

Unit-2- Atmospheric Chemistry

- Composition of atmosphere; photochemical reactions in atmosphere; smog formation, types of smog (sulphur smog and photochemical smog),
- Aerosols; chemistry of acid rain, case studies;

CO 17. Students will learn about the chemical interactions of different components within the atmosphere.

CO 18. Students will learn about the ozone layer chemistry and agents of ozone degradation.

 Reactions of NO₂ and SO₂; Free radicals and ozone layer depletion, role of CFCs in ozone depletion Unit-3- Water Chemistry Chemical and physical properties of water; Water quality parameters (physical, chemical & biological), Heavy metal in water, solubility of metals, complex formation and chelation; colloidal particles; Water quality monitoring. Unit-4- Soil Chemistry	CO 19 To provide the basic knowledge of water properties. CO 20 To understand various Water Quality Parameters. CO 21 Develop in depth knowledge about estimation of various Water Quality Parameters. CO 22 Students will learn about heavy metal in water, and solubility of metals. CO 23 Analyse the cause of complex formation and chelation. CO 24 Learners gets to understand about colloidal particles. CO 25 Students will learn the water quality monitoring techniques. CO 26 Learners get the idea of soil composition and soil
 Soil composition; relation between organic carbon and organic matter, inorganic and organic components in soil; soil humus; cation and anion exchange reactions in soil; Nitrogen, phosphorus and potassium in soil; phenolic compounds in soil; soil quality monitoring. Unit-5- Fundamental Of 	chemistry through this section. CO 27. Students will learn about soil quality monitoring techniques. CO 28 Learners get the idea of various laws of quantum
 Environmental Physics Basic concepts of light and matter; quantum mechanics (relation between energy, wavelength and frequency), 	mechanics. CO 29 Learners get the concept of absorption and types of scattering.

black body radiation, Kirchhoff's law. Boltzmann spectroscopic concepts:

- Introduction to the concept of absorption and transmission of light, Beer-Lambert law, photovoltaic and solar cells; scattering of light, Rayleigh and Mia scattering.
- Basic concepts of pressure, force, work and energy; types of forces and their relation (pressure gradient, viscous, Coriolis, gravitational, centripetal, and centrifugal force); concept of heat transfer, conduction, convection; concept of temperature, lapse rate (dry and moist adiabatic); laws of thermodynamics; concept of heat and work, Carnot engine, transmission of electrical power, efficiency of turbines, wind mills and hydroelectric power plants.

equation, CO 30. Students will learn about physical process of atmosphere.

Environment

Diffusion and dispersion, point and pollutants, pollutant area source dispersal; Gaussian plume model, mixing heights, hydraulic potential, Darcy's equation, types of flow, turbulence.

Unit-6- Movement Of Pollutant In CO 31. Students will learn about movement of pollutant in atmosphere based on mathematical approach.

	ENVS-H-CC-P- 02-Practical	 Preparation of primary and secondary standard solutions. Estimation of metals using standard potassium dichromate/ potassium permanganate solution. Measurement of physicochemical parameters of soil and water samples 	CO 32. Students will get hand on experience on preparation of solutions. CO 33. Students will expertise in some metal estimation. CO 34. Students will get skilled in measuring physicochemical parameters of soil and water samples.
		(pH, conductivity, hardness, alkalinity), soil organic matter. Unit-1- Introduction	CO 35. Students will learn about the cyclic movement of water
		Sources and types of water; hydrological cycle; precipitation, runoff, infiltration, evaporation, evapotranspiration; classification of water resources (oceans, rivers, lakes and wetlands).	· ·
II	UG-ENVS-H- CC-03-Water And Water Resources	Unit-2- Properties Of Water Physical: temperature, colour, odour, total dissolved solids and total suspended solids; Chemical: major inorganic and organic constituents, dissolved gases, DO, COD, BOD, acidity and alkalinity, electrical conductivity, sodium adsorption ratio; Biological: phytoplankton, phytobenthic, zooplankton, macroinvertebrates and microbes.	water. CO 38. Students will get to know about biological properties

Unit-3- Surface And Subsurface	CO 39. Learners will get to know about properties water table
Water	and its impotence.
Introduction to surface and ground	
water; surface and ground water	CO 40. Students will get to know about different water
pollution; water table; vertical	management techniques.
distribution of water; formation and	
properties of aquifers; techniques for	
ground water recharge; river structure	
and patterns; watershed and drainage	
basins; importance of watershed and	
watershed management; rain water	
harvesting in urban settings.	
Unit-4- Wetlands And Their	CO 41. Students will get the understandings about wetlands.
Management	
Definition of a wetland; types of	CO 42. Learners will get to know about different organizations
wetlands (fresh water and marine);	protecting wetlands.
ecological significance of	
wetlands; threats to wetlands; wetland	
conservation and management; Ramsar	
Convention, 1971; major wetlands of	
India.	
Unit-5- Marine Resource	CO 43. Students will get to know about the value of marine
Management	system.
Marine resources; commercial use of	
marine resources; threats to marine	CO 44. Learners will get to know about threats of marine
ecosystems and resources; marine	system and proper management practices.

	ecosystem and resource management	
	(planning approach, construction	
	techniques and monitoring of coastal	
	zones).	
	Unit-6- Water Resource In India	CO 45. Students will get to know present water demand and
	Demand for water (agriculture,	quality standard in India.
	industrial, domestic); overuse and	
	depletion of surface and ground water	
	resources; water quality standards in	
	India; hot spots of surface water; role of	
	state in water resource management.	
	Unit-7- Water Resource Conflicts	CO 46 . Case studies give an idea of water resource conflicts at
	Water resources and sharing problems,	national and international levels in the Indian context.
	case studies on Kaveri and Krishna	
	river water disputes; Multipurpose river	
	valley projects in India and their	
	environmental and social impacts; case	
	studies of dams Narmada and Tehri	
	dam – social and ecological losses	
	versus economic benefits; International	
	conflicts on water sharing between	
	India and her neighbours; agreements	
	to resolve these conflicts.	
	Unit-8- Major Laws And Treaties	CO 47. Students are given descriptions of the main laws and
	National water policy; water pollution	policies relating to the management of water resources.
	(control and prevention) Act 1972;	
	Indus water treaty; Ganges water treaty;	
	Teesta water treaty; National River	

	linking plan: ecological and economic impacts.	
UG-ENVS-H- CC-P -03- Practical	 Field study related to rainwater harvesting /groundwater wells and document preparation. Field visit to wetland and document preparation. Water demand in domestic/agricultural fields/ industrial areas through preparation of survey sheets followed by documentation 	CO 48 A field trip can help learners gain a better understanding of rainwater harvesting in practice. CO 49 A field trip can help learners gain a better understanding of wetland and its importance. CO 50 A survey can help learners gain a better understanding of water demand of the survey area.
UG-ENVS-H- CC-04-Land And Soil Conservation	 Unit-1- Introduction Land as a resource, soil health; ecological and economic importance of soil; Types and causes of soil degradation; impact of soil loss and soil degradation on agriculture and food security; Need for soil conservation and restoration of soil fertility. 	CO 51. Students will learn about the importance of soil. CO 52. Students will learn about causes of soil degradation; impact of soil loss and soil degradation on agriculture CO 53. Students will learn about Need for soil conservation
and Management	Unit-2- Fundamentals Of Soil Science Soil formation; classification of soil; soil architecture; physical properties of soil; soil texture; soil water holding capacity; soil temperature; soil colloids; soil acidity and alkalinity; soil	CO 54. Students will learn about the soil composition. CO 55. Students will learn about the physic-chemical properties of soil.

salinity and sodicity; soil organic	
matter; micronutrients of soil; nitrogen,	
sulphur, potassium and phosphorus	
economy of soil; soil biodiversity	
Unit-3- Soil Degradation – Causes	CO 56. Students will learn about cause and effect of soil
Soil resistance and resilience; nature	degradation
and types of soil erosion; non-erosive	CO 57. Students will learn about effects of using fertilizers
and erosive soil degradation; losses of	
soil moisture and its regulation; nutrient	
depletion; soil pollution due to mining	
and mineral extraction, industrial and	
urban development, toxic organic	
chemicals, and organic contaminants in	
soils; fertilizers and fertilizer	
management; recycling of soil	
nutrients.	
Unit-4- Land use Changes And Land	CO 58. Students will learn about the cause and effects of land
Degradation	degradation
Land resources: types and evaluation;	CO 59. Students will learn about drivers of land degradation -
biological and physical phenomena in	deforestation, desertification; habitat loss
land degradation; visual indicators of	CO 60. Students will learn about change in major geographic
land degradation; drivers of land	zones and biodiverse regions with particular reference to the
degradation - deforestation,	Himalaya and the Western Ghats
desertification; habitat loss, loss of	
biodiversity; range land degradation;	
land salinization; drivers of land use	

and land seven shares in	maion
and land cover change in	
	diverse
regions with particular reference	e to the
Himalaya and the Western Ghats	S
Unit-5- Costs Of Land Degrad	ation CO 61. Students will learn about the Economic valuation of
Economic valuation of	land land degradation
degradation; onsite and offsite c	costs of CO 62. Students will learn about the Economic issues of
land degradation; loss of eco	system ecosystem services
	arming
communities; effects on food se	
effects on nutrient cycles; future	
of soil degradation; emerging thr	
land degradation to deve	
	croping
countries.	
Unit-6- Controlling	Land CO 63. Students will learn about the Sustainable land use
Degradation	planning
Sustainable land use planning;	role of CO 64. Students will learn about the land degradation
databases and data analysis in la	and use assessment
planning control and managemen	nt; land
tenure and land policy;	
institutional and sociological f	
	adation
assessment; integrating	land
degradation assessment	into
conservation.	

	UG-ENVS-H- CC-P -04- Practical	 Determination of soil organic matter, nutrients (N, P, K), Soil water holding capacity, Soil texture analysis. Soil profile study. Identification of degraded land using remote sensing data and topographical sheets 	Determination of soil organic matter, nutrients (N, P, K), Soil water holding capacity, Soil texture analysis CO 66. student will learn soil profile study
III		Unit 1- Introduction Basic concepts and definitions: ecology, landscape, habitat, ecozones, biosphere, ecosystems, ecosystem stability, resistance and resilience; autecology; synecology; major terrestrial biomes.	CO 67 . Students will learn about the basic concept of ecology and ecosystem
	UG-ENVS-H- CC-05-Ecology And Ecosystems	Unit 2- Ecology Of Individuals Ecological amplitude; L i m i t i n g f a c t o r s; Liebig's Law of the Minimum; Shelford's Law of Tolerance; phenotypic plasticity; ecotypes; ecoclines; acclimation; ecological niche; types of niche: Eltonian niche, Hutchinsonian niche, fundamental niche, realized niche; niche breadth; niche partitioning; niche differentiation; thermoregulation;	· ·

	strategies of adaptation in plants and	
	animals.	
ī	Unit 3- Ecology Of Population	CO 70. Students will learn about the population ecology
	Concept of population and meta-	CO 71. Students will learn about the population characteristics.
	population; r- and K-selection;	CO 72. Students will learn about the population growth and
	characteristics of population: density,	growth limits.
	dispersion, natality, mortality, life	CO 73. Students will learn about the deterministic and
	tables, survivorship curves, age	stochastic models of population dynamics
	structure; population growth:	
	geometric, exponential, logistic,	
	density-dependent; limits to population	
	growth; deterministic and stochastic	
1	models of population dynamics;	
1	rudreal, competitive and stress-	
	tolerance strategies.	
	Unit 4- Ecology of Communities	CO 74. Students will learn about the community ecology
	Discrete versus continuum community	CO 75. Students will learn about the population stability and
,	view; community structure and	interrelationship and cooperation.
	organization: physiognomy,	
	sociability, species associations,	
	periodicity, biomass, stability, keystone	
S	species, ecotone and edge effect;	
	species interactions: mutualism,	
5	symbiotic relationships,	
	commensalism, amensalism, proto	
	cooperation, predation, competition,	

parasi	ism, mimicry, herbivory;	
ecolog	ical succession: types, processes	
and m	odels.	
Unit 5	- Ecosystem Ecology	CO 76. Students will learn about the components of ecosystem
E cos	ystem structure and functions;	ecology
abiotic	and biotic components of	CO 77. Students will learn about the ecosystem productivity
ecosys	tem; ecosystem metabolism;	CO 78. Students will learn about the energy flow in ecosystem
prima	y production and models of	CO 79. Students will learn Some model ecosystems: forest,
energy	flow; secondary production and	grassland, lentic, lotic, estuarine, marine, desert, wetlands
trophic	efficiency; ecosystem	
conne	etions: food chain, food web;	
model	s of energy flow; ecological	
efficie	ncies; ecological pyramids;	
ecosys	tem services; Some model	
ecosys	tems: forest, grassland, lentic,	
lotic,	estuarine, marine, desert,	
wetlar	ds.	
Unit	6- Biogeochemical Cycle And	CO 80. Students will learn about the biogeochemical cycle in
Nutri	ent Cycling	ecosystem and nutrient conservation
Conce	ots of pools, flux, turnover time;	CO 81. Students will learn about nutrient pool
types	of biogeochemical cycles; carbon	
cycle;	nitrogen cycle; phosphorus	
cycle;	sulphur cycle; hydrological	
cycle;	nutrient cycle models; nutrient	
budge	; impact of anthropogenic	

	activities on the nutrient cycles;	
	nutrient conservation strategies.	
	UNIT 7- Biological Invasions	CO 82. Students will learn about the invasion in ecosystem and
	Concept of exotics and invasive;	role of induced species.
	natural spread versus man-induced	
	invasions; characteristics of invaders;	
	stages of invasion; mechanisms of	
	invasions; invasive pathways; impacts	
	of invasion on ecosystem and	
	communities; economic costs of	
	biological invasions.	
UG-ENVS-H- CC-P -05- Practical	 Qualitative and quantitative analysis of planktons of aquatic systems. Determination of species, dominance and frequency using quadrate/ plot method. Determination of dissolved oxygen, free carbon dioxide and primary productivity of water samples collected from aquatic ecosystems. Ecological field visit: pond/forest/river/wetland or other ecosystem 	CO 83.Students will identify the plankton from aquatic systems and learn the frequency analysis. CO 84. Students will learn about the dissolved oxygen, free carbon dioxide and primary productivity of water samples collected from aquatic ecosystems.
UG-ENVS-H- CC-06- Biodiversity And Conservation	Unit-1- Levels Of Organization In Living World From genes to ecosystems; tree of life; history of character transformation; organic evolution through geographic	CO 85. Learners are given descriptions of the phylogenetic tree. CO 86. Learners are given the concept of species and the process of speciation.

a name?; how nearth?; concept Unit-2- Biodiv Spatial patter elevational tre temporal patter in biodiversity biodiversity pat	ens: latitudinal and ends in biodiversity; as: seasonal fluctuations patterns; importance of terns in conservation.	CO 87. Students comprehend the patterns of biodiversity. CO 88. Learners are given the idea of importance of biodiversity patterns in conservation.
Sampling strafloristic, faunal and quantitating habitat assessing frequency, and diversity, community diversity beta and gamma techniques:	and aquatic; qualitative we methods: scoring, nent, richness, density, bundance, evenness, biomass estimation; ersity estimation: alpha, na diversity; molecular AFLP; NCBI database,	CO 89. Students get an understanding of the various biodiversity sampling and survey methods. CO 90. Learners get to learn about biodiversity measurement methods discussed in this section.
Economic valudrugs, fisheri ecological s	•	CO 91. Students study the numerous values of biodiversity for the sustainability of ecosystems.

b	piogeochemical cycling; ecosystem	
S	services – purification of water and air,	
n	nutrient cycling, climate control, pest	
c	control, pollination, and formation and	
p	protection of soil; social, aesthetic,	
c	consumptive, and ethical values of	
b	piodiversity.	
U	Unit-5- Threats To Biodiversity	CO 92. Learners get to learn that the decline in biodiversity can
N	Natural and anthropogenic	be attributed to a variety of factors.
d	disturbances; habitat loss, habitat	
d	degradation, and habitat fragmentation;	
c	climate change; pollution; hunting;	
o	over-exploitation; deforestation;	
h	nydropower development; invasive	
S	species; land use changes; overgrazing;	
n	nan wildlife conflicts; consequences	
o	of biodiversity loss;	
I	Intermediate Disturbance Hypothesis	
U	Unit-6- Biodiversity Conservation	CO 93. Through recommended preventive steps, students learn
I	In-situ conservation (Biosphere	how to mitigate the threat to biodiversity.
R	Reserves, National Parks, Wildlife	
S	Sanctuaries); Ex-situ conservation	CO 94. Learners get to learn about organizations working to
	botanical gardens, zoological gardens,	conserve biodiversity.
g	gene banks, seed and seedling banks,	
p	pollen culture, tissue culture and DNA	
b	banks), role of local communities and	

	traditional knowledge in conservation;	
	biodiversity hotspots; IUCN Red List	
	categorization – guidelines, practice	
	and application; Red Data book;	
	ecological restoration; afforestation;	
	social forestry; agro forestry; joint	
	forest management; role of remote	
	sensing in management of natural	
	resources.	
	Unit-7- Biodiversity In India	CO 95. This section discusses the current biodiversity situation
	India as a mega diversity nation;	in India as well as relevant regulations.
	phytogeographic and zoogeographic	
	zones of the country; forest types and	
	forest cover in India; fish and fisheries	
	of India; impact of hydropower	
	development on biological	
	diversity; status of protected areas and	
	biosphere reserves in the country;	
	National Biodiversity Action Plan.	
	Biological diversity Act & rule (2002/	
	2004) implementation status.	
	• Biodiversity measurement techniques: Biodiversity richness	CO 96. Hand on experience is achieved on biodiversity measurement from tabulated data.
UG-ENVS-H-	and diversity indexes.	CO 97. Field visit of an ecorestorated site provides knowledge
CC-P-06- Practical	• IUCN red list categorisation-	of restoration techniques and monitoring activities.
Pracucal	Guideline criteria	
	• Ecorestoration – site visit.	

	Unit-1- Fundamentals Of	CO 98. This section discusses structure and composition of
	Atmospheric Chemistry	atmosphere.
	Atmospheric structure and	CO 99. Learners get to learn about chemical processes
	composition, Milankovitch cycles.	occurring in atmosphere.
	Chemistry of atmospheric particles and	CO 100. Learners get to learn about the concept of greenhouse
	gases; smog – types and processes;	effect.
	photochemical processes; ions and	
	radicals in atmosphere; acid-base	
	reactions in atmosphere; atmospheric	
	water; role of hydroxyl and	
	hydroperoxyl radicals in atmosphere.	
UG-ENVS-H-	Green house gases (GHGs);	
CC-07- Atmosphere And	greenhouse effect; global warming	
Global Climate	Unit-2- Meteorology And	CO 101. Learners get to learn about different meteorological
Change	Atmospheric Stability	parameters.
	Meteorological parameters	
		CO 102. Learners get the understanding about atmospheric
	speed and direction, precipitation);	stability.
	atmospheric stability and mixing	
		CO 103. Learners get to learn about various climatic conditions
	behavior; Gaussian plume model.	in different scales.
	Movement of air masses; atmosphere	
	and climate; air and sea interaction;	
	southern oscillation; western	
	disturbances; El Nino and La Nina;	
	tropical cyclone; Indian monsoon and	

its develo	pment, changing monso	on in	
Holocene	in the Indian subcontine	nt, its	
impact or	agriculture and Indus v	alley	
civilization	on; effect of urbanization	on on	
micro clin	nate; Asian brown cloud	ls.	
Unit-3-	Global Warming	And	CO 104. Students get to learn about causes and impact of
Climate	Change		Global Warming And Climate Change.
Earth's cl	imate through ages; tren	ds of	
global w	arming and climate ch	ange;	
	of global warming and		
potential	of different green house	gases	
(GHGs)	causing the climate ch	ange;	
atmosphe	ric windows; impact	t of	
climate ch	nange on atmosphere, we	eather	
	sea level rise, agricu		
productiv	ity and biological respon	nses -	
range shit	ft of species, CO2 fertiliz	zation	
and agric	culture; impact on eco	nomy	
and sprea	d of human diseases.		
Unit-4-O	zone Layer Depletion		CO 105. Learners get the understanding on Ozone depletion.
Ozone	layer or ozone sl	hield;	CO 106. Students get the understanding on international
importance	ce of ozone layer; ozone	layer	protocols targeting ozone layer protection.
depletion	and causes; Chapman o	cycle;	
process o	f spring time ozone depl	letion	
over Ai	ntarctica; ozone depl	leting	
substance	es (ODS); effects of o	ozone	

	depletion; mitigation measures and	
	international protocols.	
	Unit-5- Climate Change And Policy	CO 107. Students get knowledge on several national and
	Environmental policy debate;	international policies targeting climate change.
	International agreements; Montreal	
	protocol 1987; Kyoto protocol 1997;	
	Convention on Climate Change; carbon	
	credit and carbon trading; clean	
	development mechanism.	
	 Preparation of meteorological charts, graphs and windrose Handling of meteorological data 	CO 108. Understanding and preparation of different meteorological charts from data collected using different meteorological instruments are main focus of these practical.
UG-ENVS-H- CC-P -07- Practical	 Handing of meteorological data recording instruments (Rain gauge, Anemometer, wet bulb dry bulb thermometer, Barometer) and their uses Field visit to meteorological centre. 	CO 109. A field trip can help learners gain a better understanding of how the meteorological centre works.
UG-ENVS-H- SEC-01a-Remote Sensing, Geographic Information System & Modelling	 UNIT 1- Remote Sensing Definitions and principles Electromagnetic spectrum Interaction of EMR with Earth's Surface Spectral signature Satellites and Sensors Aerial photography and image interpretation 	CO 110. To develop basic knowledge of remote sensing. CO 111. To provide the concept of Electromagnetic radiation, electromagnetic spectrum, and relationship between wavelength, velocity and frequency of electromagnetic waves. CO 112. Students are able to learn the interaction of electromagnetic radiation with Earth's surface. CO 113. To understand the concept of spectral signature. CO 114. To study different types of satellites and sensors are used in remote sensing and other sectors. CO 115. Students are able to learn about aerial photography, satellite image.

	CO 116. To identify and extract meaningful information from
	the imagery.
UNIT 2- Geographyical information	CO 117. To develop basic knowledge of GIS.
systems	CO 118. To provided knowledge of Geographical analysis by
Definitions and components	Raster and vector data.
• Spatial and non-spatial data; Raster	CO 119. To provide basic knowledge of data, database and
and Vector data Detabase generation : Detabase	database management systems.
• Database generation ; Database management system	CO 120. To provide knowledge about basic GIS softwares used
Land use/ Land Cover mapping	in various industries.
Overview of GIS software packages	CO 121. To create a knowledge of GPS/ Global Positioning
GPS survey	System.
• Data import, processing and	CO 122. Students are able to learn the process of GIS and
mapping	mapping.
UNIT 3 - Applications and case	CO 123. Be able to describe application of Remote Sensing
studies of remote sensing and GIS in	and GIS Technology in various fields in the environment.
geosciences	
Water resource management	
• land use planning	
• Forest resources	
• Agriculture, marine and	
atmospheric studies UNIT 4- Basic elements of statistical	CO 124. Students are able to learn the basic statistical
analysis	elements.
Basic elements of statistical analyses:	
sampling; types of distribution –	CO 125. Students are able to learn about different type of
normal, binomial,	statistical test methods.
poisson; measurements of central	
tendency and dispersion; skewness;	

and non-parametric tests; correlation and regression; curve fitting; analysis of variance. Unit 5: Demonstrative exercise • Visual interpretation of standard False Colour Composite (FCC) data. • Thematic map generation. • Digitisation of thematic layer. • Overlay analysis of thematic layer in GIS environment. • GIS laboratory visit.			kurtosis; hypothesis testing; parametric	
and regression; curve fitting; analysis of variance. Unit 5: Demonstrative exercise • Visual interpretation of standard False Colour Composite (FCC) data. • Thematic map generation. • Digitisation of thematic layer. • Overlay analysis of thematic layer in GIS environment. • GIS laboratory visit. Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; evidence from CO 126. Students will learn about the interpretation techniques of different types of maps. CO 127. Students will learn about the taxonomy and biosystematics CO 127. Students will learn about the taxonomy and biosystematics CO 128. Students will learn the nomenclature, classical nomenclature and advanced theory on it.				
of variance. Unit 5: Demonstrative exercise • Visual interpretation of standard False Colour Composite (FCC) data. • Thematic map generation. • Digitisation of thematic layer. • Overlay analysis of thematic layer in GIS environment. • GIS laboratory visit. Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from CO 126. Students will learn about the interpretation techniques of different types of maps. CO 127. Students will learn about the interpretation techniques of different types of maps. CO 128. Students will learn about the interpretation techniques of different types of maps. CO 128. Students will learn about the interpretation techniques of different types of maps.			•	
Unit 5: Demonstrative exercise Visual interpretation of standard False Colour Composite (FCC) data. Thematic map generation. Digitisation of thematic layer. Overlay analysis of thematic layer in GIS environment. GIS laboratory visit. Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from CO 126. Students will learn about the interpretation techniques of different types of maps. CO 127. Students will learn about the taxonomy and biosystematics CO 128. Students will learn about the taxonomy and biosystematics CO 128. Students will learn about the taxonomy and biosystematics CO 128. Students will learn about the taxonomy and biosystematics CO 128. Students will learn about the taxonomy and biosystematics CO 128. Students will learn about the taxonomy and biosystematics CO 128. Students will learn about the interpretation techniques of different types of maps.				
 Visual interpretation of standard False Colour Composite (FCC) data. Thematic map generation. Digitisation of thematic layer. Overlay analysis of thematic layer in GIS environment. GIS laboratory visit. Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; evidence from UG-ENVS-H-CC-08-Bio- 				
False Colour Composite (FCC) data. • Thematic map generation. • Digitisation of thematic layer. • Overlay analysis of thematic layer in GIS environment. • GIS laboratory visit. IV Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from False Colour Composite (FCC) data. • Thematic map generation. CO 127. Students will learn about the taxonomy and biosystematics CO 128. Students will learn the nomenclature, classical nomenclature and advanced theory on it.			Unit 5: Demonstrative exercise	CO 126. Students will learn about the interpretation techniques
 Thematic map generation. Digitisation of thematic layer. Overlay analysis of thematic layer in GIS environment. GIS laboratory visit. Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from UG-ENVS-H-CC-08-Bio- 			Visual interpretation of standard	of different types of maps.
 Digitisation of thematic layer. Overlay analysis of thematic layer in GIS environment. GIS laboratory visit. Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from UG-ENVS-H-CC-08-Bio- 			False Colour Composite (FCC) data.	
Overlay analysis of thematic layer in GIS environment. GIS laboratory visit. Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from CO 127. Students will learn about the taxonomy and biosystematics CO 128. Students will learn the nomenclature, classical nomenclature and advanced theory on it.			• Thematic map generation.	
GIS environment. • GIS laboratory visit. Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from GIS environment. • GIS laboratory visit. CO 127. Students will learn about the taxonomy and biosystematics CO 128. Students will learn the nomenclature, classical nomenclature and advanced theory on it.			• Digitisation of thematic layer.	
• GIS laboratory visit. Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from CC-08-Bio- OCO 127. Students will learn about the taxonomy and biosystematics CO 128. Students will learn the nomenclature, classical nomenclature and advanced theory on it.			• Overlay analysis of thematic layer in	
Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from Unit-1- Biosystematics - Concept And Approaches Definition of biosystematics; CO 128. Students will learn about the taxonomy and biosystematics CO 128. Students will learn about the taxonomy and biosystematics CO 128. Students will learn the nomenclature, classical nomenclature and advanced theory on it.			GIS environment.	
And Approaches Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from biosystematics CO 128. Students will learn the nomenclature, classical nomenclature and advanced theory on it.			• GIS laboratory visit.	
Definition of biosystematics; taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from	IV		Unit-1- Biosystematics - Concept	CO 127. Students will learn about the taxonomy and
taxonomic identification; keys; field inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from			And Approaches	biosystematics
UG-ENVS-H- CC-08-Bio- inventory; herbarium; museum; botanical gardens; taxonomic literature; nomenclature; evidence from			Definition of biosystematics;	CO 128. Students will learn the nomenclature, classical
UG-ENVS-H- CC-08-Bio- botanical gardens; taxonomic literature; nomenclature; evidence from			taxonomic identification; keys; field	nomenclature and advanced theory on it.
CC-08-Bio- literature; nomenclature; evidence from			inventory; herbarium; museum;	
CC-08-Bio- literature; nomenclature; evidence from				
Systematics and anatomy, palynology, ultrastructure,		IIG-ENVS-H-		
			botanical gardens; taxonomic	
Biogeography cytology, phytochemistry, numerical		CC-08-Bio-	botanical gardens; taxonomic literature; nomenclature; evidence from	
and molecular methods; taxonomy		CC-08-Bio- Systematics and	botanical gardens; taxonomic literature; nomenclature; evidence from anatomy, palynology, ultrastructure,	
databases.		CC-08-Bio- Systematics and	botanical gardens; taxonomic literature; nomenclature; evidence from anatomy, palynology, ultrastructure, cytology, phytochemistry, numerical	
Unit-2- Taxonomic Hierarchy CO 129. Students will have the concept of taxa and categories		CC-08-Bio- Systematics and	botanical gardens; taxonomic literature; nomenclature; evidence from anatomy, palynology, ultrastructure, cytology, phytochemistry, numerical and molecular methods; taxonomy	
Concept of taxa (species, genus, family, in taxonomic hierarchy.		CC-08-Bio- Systematics and	botanical gardens; taxonomic literature; nomenclature; evidence from anatomy, palynology, ultrastructure, cytology, phytochemistry, numerical and molecular methods; taxonomy databases.	CO 129. Students will have the concept of taxa and categories
order, class, phylum, kingdom);		CC-08-Bio- Systematics and	botanical gardens; taxonomic literature; nomenclature; evidence from anatomy, palynology, ultrastructure, cytology, phytochemistry, numerical and molecular methods; taxonomy databases.	,

concept of species (taxonomi	2,
typological, biological, evolutionar	7,
phylogenetic); categories an	d
taxonomic hierarchy.	
Unit-3- Nomenclature And System	Students will learn about the Principles and rules of
Of Classification	Botanical and Zoological Nomenclature
Principles and rules (International Cod	e
of Botanical and Zoologic	al CO 131. Students will learn about classification systems of
Nomenclature); ranks and names; typ	Bentham and Hooker and Angiosperm Phylogeny Group (APG
and typification; author citation; val	d III) classification.
publication; rejection of name	ş;
principle of priority and its limitation	s;
names of hybrids; classification	n
systems of Bentham and Hooke	r;
Angiosperm Phylogeny Group (AP	G
III) classification.	
Unit-4- Numerical And Molecula	r CO 132. Students will learn the numerical and molecular
Systematics Systematics	systematics
Characters; variations; operation	
taxonomic units; character weighting	g
and coding; phenograms; cladogram	s;
DNA barcoding; phylogenetic tro	e
(rooted, unrooted, ultrametric trees).	
Unit-5- Biogeography- An Overvie	CO 133. Students will learn the biogeography rules
Earth's history; paleo-records	of CO 134. Students will learn the types and processes of
diversity and diversificatio	speciation – allopatric, parapatric, sympatric

	continental drift and plate tectonics and	
	their role in biogeographic patterns –	
	past and present; biogeographical	
	dynamics of climate change and Ice	
	Age. Genes as unit of evolutionary	
	change; mutation; genetic drift; gene	
	flow; natural selection; geographic and	
	ecological variation; biogeographical	
	rules – Gloger's rule, Bergmann's rule,	
	Allen's rule, Geist rule;	
	biogeographical realms and their fauna;	
	endemic, rare, exotic, and cosmopolitan	
	species. Types and processes of	
	speciation – allopatric, parapatric,	
	sympatric; ecological diversification;	
	adaptive radiation, convergent and	
	parallel evolution; dispersal and	
	immigration; means of dispersal and	
	barriers to dispersal; extinction.	
	Unit-6- Conservation Biogeography	CO 135 . Students will learn the Application of
	Application of biogeographical rules in	biogeographical rules in design of protected area and biosphere
	design of protected area and biosphere	reserves; use of remote sensing in conservational planning
	reserves; use of remote sensing in	
	conservational planning.	
UG-ENVS-H-	• Demonstration of typification	CO 136. Students will learn the typification procedure.
CC-P-08-	procedure.	
Practical	20	

	• Field visit for floral and faunal	CO 137. Through filed visit students learn the floral and faunal
	assessment of an area.	assessment and protected area criterian.
	• Criteria used for designation of a	CO 138. Students will study the invasive species and their
	protected area- preparation of	characters.
	worksheet.	onaracters.
	• Study of invasive species	
	distribution and documentation.	
	Unit-1- Introduction	CO 139. Students will study the Classification of resource.
	Resource and reserves; classification of	CO 140. Students will learn the human impact on natural
	natural resources; renewable and non-	resources.
	renewable resources; resource	
	degradation; resource conservation;	
	resource availability and factors	
	influencing its availability; land	
UG-ENVS-H-	resources; water resources; fisheries	
CC-09-Natural	and other marine resources; energy	
Resource	resources; mineral resources; human	
Management	impact on natural resources; ecological,	
And	social and economic dimension of	
Sustainability	resource management.	
	Unit-2- Natural Resources And	CO 141. Students will get the understanding on different
	Conservation	natural resources and their importance.
	Water resources: supply, renewal, and	
		CO 142. Students will learn the resource management
	shortages, strategies of water	_
	conservation; soil resources:	Strategies in uns section.
	<i>'</i>	
	importance of soil, soil conservation	

strategies; food resources: world food problem, techniques to increase world food production, green revolution. Forest resources: economic and ecological importance of forests, forest management strategies, sustainable forestry.

Mineral resources and the rock cycle; identified resources; undiscovered resources; reserves; types of mining: surface, subsurface, open-pit, dredging, strip; reserve-to-production global consumption patterns of mineral resources techniques to increase mineral resource supplies; ocean mining for mineral resources; environmental effects of extracting and using mineral resources.

Energy Resources-Non-Unit-3-Renewable & Renewable

Oil: formation, exploration, extraction natural gas: exploration, liquefied energy dependency. petroleum gas, liquefied natural gas; coal: reserves, classification,

CO 143. Students will learn about the non-renewable energy resource.

and processing, oil shale, tar sands; CO 144. Students will learn the different approaches towards

formation, extraction, processing, coal gasification; environmental impacts of non renewable energy consumption; impact consumption energy global on application economy; of green technology; future energy options and challenges. Energy efficiency; life cycle cost; cogeneration; solar energy: technology, advantages, passive and active solar heating system, solar thermal systems, solar cells, JNN solar mission; hydropower: technology, potential, operational costs, benefits of hydropower development; nuclear power: nuclear fission, fusion, reactors, pros and cons of nuclear power, storage of radioactive waste, radioactive contamination; tidal energy; wave thermal energy; ocean energy conversion (OTEC); geothermal energy; energy from biomass; biodiesel.

Unit-4- Resource Management

Approaches in resource management: ecological approach; economic

CO 145. Students will get to know about several approaches regarding resource management.

	approach; ethnological approach;	CO 146. Students will learn about Indian renewable energy
	implications of the approaches;	programme.
	integrated resource management	
	strategies; concept of sustainability	
	science: different approach towards	
	sustainable development and its	
	different constituents; sustainability of	
	society, resources and framework;	
	sustainable energy strategy; principles	
	of energy	
	conservation; Indian renewable energy	
	programme.	
	•Forest area mapping techniques.	CO 147. Learner get an experience on mapping technique as
	•Water bodies mapping techniques.	well as resource auditing method.
UG-ENVS-H-	•Water audit of college/ industry.	CO 149 A field twin our belon learness sain a better
CC-P -09-	•Energy audit of college/ industry.	CO 148. A field trip can help learners gain a better
Practical	•Environmental audit of college.	understanding of different natural resources.
	•Visit to mine area, forest area and aquaculture farm.	
	Unit-1- Introduction	CO 149. Basic concept of pollution and pollutants are covered
	Definition of pollution; pollutants;	in this section.
UG-ENVS-H-	classification of pollutants	
CC-10-	Unit-2- Air Pollution	CO 150. This topic helps learner to understand the type air
Environmental	Ambient air quality: monitoring and	pollutants, their sources, effects, emission standards and
Pollution and	standards (National Ambient Air	controlling measures.
Human Health	Quality Standards of India); air quality	Controlling incusures.
	index; sources and types of pollutants	
	muck, sources and types of ponutants	

(primary a	nd secondary); smog (case	
study); effe	cts of different pollutants on	
human hea	lth (NOx, SOx, PM, CO,	
CO2, hydr	ocarbons and VOCs) and	
control mea	asures; indoor air pollution:	
sources, ef	fects on human health and	
remedial str	rategies. Vehicular pollution	
and control	measures.	
Unit-3- Wa	ter Pollution	CO 151. Learners get to know about different sources of water
Sources of	surface and ground water	pollutants, standards and their impacts on human health.
pollution; v	ater quality parameters and	
standards;	organic waste and water	
pollution; e	utrophication; water quality	
monitoring,	COD, BOD, DO; effect of	
water conta	aminants on human health	
(nitrate, fl	uoride, arsenic, chlorine,	
cadmium,	mercury, pesticides); water	
borne disea	ses; concept and working of	
effluent trea	atment plants (ETPs).	
Unit-4- So	il Pollution	CO 152. Learner develops an understanding over the causes,
Causes	f soil pollution and	effects, and preventative strategies of soil pollution.
degradation	; effect of soil pollution on	
environmer	it, vegetation and other life	
forms; cont	rol strategies.	
Unit-5- No	ise Pollution	CO 153. Sources, properties and impacts of Noise on living
		organisms are mentioned in this topic.

Noise pollution – sources; frequen	cy,
intensity and permissible ambient no	ise
levels; effect	on
communication, impacts on life for	ms
and humans - working efficien	cy,
physical and mental health; cont	rol
measures.	
Unit-6- Radioactive And Therm	CO 154. This section develops an understanding of the source
Pollution	and impact of radioactive and thermal pollution.
Radioactive material and sources	of
radioactive pollution; effect	of
radiation on human health (somatic a	and
genetic effects); thermal pollution a	and
its effects.	
Unit-7- Marine Pollution	CO 155. The study would impart an idea of the different source
Marine resources and their importan	ce; of marine pollutants and their impacts on marine ecosystem.
sources of marine pollution; oil sp	pill
and its effects; coral reefs and the	eir
demise; coastal area manageme	nt;
existing challenges and management	ent
techniques (planni	ng,
construction, environmen	ital
monitoring of coastal zones).	
Unit-8- Chemistry	Of CO 156. Learners develop a better understanding of the
Environmental Pollutants	chemical properties of environmental pollutants.

Solubility of pollutants (hydrophilic and lipophilic pollutants), transfer of pollutants within different mediums, role of chelating agents in transferring pollutants, concept of biotransformation and bioaccumulation, concept of radioactivity, radioactive decay and half-life of pollutants, organometallic compounds, acid mine drainage.

Unit-9- Pollution Control

Activated Sludge Process (ASP) -Trickling Filters – oxidation ponds, fluidized bed reactors. membrane bioreactor neutralization. ETP sludge management; digesters, up flow anaerobic sludge blanket reactor, fixed film reactors, sequencing batch reactors, hybrid reactors, bioscrubbers, biotrickling filters: regulatory framework for pollution monitoring and control; case study: Ganga Action Yamuna Action Plan: Plan; implementation of CNG in NCT of Delhi. **Application** of clean technologies for pollution control.

CO 157. Different technological advancement in pollution control with some case studies are followed by learner.

UG-ENVS-H CC-P-10- Practical	 Estimation of air quality parameters (NOx, SOx, SPM). Field visit to effluent treatment plants (ETP)/ sewage treatment plants (STP). Total coliform load of water sample. Noise monitoring (Leq). 	CO 158. Students get experience on analytical procedures relating to water, air and noise pollutants. CO 159. A field trip can help learners gain a better understanding of how the effluent treatment plants (ETP)/ sewage treatment plants (STP) works.
UG-ENVS-H SEC-02a- Environment Impact and Ri Assessment	• Role of project proponents. project developers and consultants	Environmental Impact assessment Process, methodologies of Environmental Impact assessment CO 161. Create an understanding among students about what is the role of various authorities involved in the EIA process. CO 162. Explain the processes of EIA step by step. CO 163. Explain the basic concept of Environmental Management Plan CO 164. To develop clear thinking about social impact

 Life cy Environ princip Environ Environ Introdu 	onmental planning onmental audit	CO 166. Student gained insight into advanced theoretical knowledge in methodologies in environmental management plan. CO 167. Got knowledge of environmental audit and ISO series. CO 168. Students will be able to Analyse the importance of strategies of sustainable development.
• Sta • Cui • Cas pro	se study of hydronower l	CO 169. Explain the current status and issues of EIA in India. CO 170. Explain various case studies of EIA related to various projects. CO 171. Got knowledge of environmental audit.
• con • cra • Life was • Rol mai	le of LCA in waste nagement vantage and limitation of	CO 172. To explain the basic concept of life cycle assessment CO 173. Assess the environmental impact of solid waste management options and criticize the results CO 174. Discuss the case studies on LCA of a product

		 Unit- Risk assessment Introduction and scope Project planning Exposure assessment toxicity assessment Hazard identification and assessment Risk characterization Risk communication Environmental monitoring; community involvement; legal and regulatory framework Human and ecological risk assessment 	CO 175. To provide basic knowledge of risk assessment and its scope. CO 176. Understand the importance of risk assessment. CO 177. To understand risk characterization and risk communication. CO 178. To enhance knowledge of Hazard identification and assessment. CO 179. Approaches for Environmental monitoring; legal and regulatory framework.
V	UG-ENVS-H- Cc-11) Environmental Biotechnology	Unit 1: The structure and function of DNA, RNA and protein Genetic materials of prokaryotes, viruses, eukaryotes and organelles; mobile DNA; chromosomal organization; Central dogma of biology. DNA: structural forms and their characteristics (B, A, C, D, T, Z); physical properties: UV absorption spectra, denaturation and renaturation kinetics; biological significance of different forms; Synthesis. RNA: structural forms and their	genetic materials. CO 181. Students get to know about Structure, properties and forms of DNA. CO 182. Students get to know about Structure, properties and forms of RNA. CO 183. Students get to know about Structure, properties and

characteristics (rRNA, mRNA, tRNA; SnRNA, Si RNA, miRNA, hnRNA); biological significance of different types of RNA; synthesis.

Protein: hierarchical structure (primary, secondary, tertiary, quaternary), types of amino acids; post- translational modifications and their significance; synthesis; types and their role: structural, functional (enzymes).

Unit 2: Recombinant DNA technology

Concept of genetic engineering; Recombinant DNA: origin and current status; steps of preparation; toolkit of enzymes for manipulation of DNA: restriction enzymes, polymerases (DNA/RNA polymerases, transferase, reverse transcriptase), other DNA modifying enzymes (nucleases, ligase, phosphatases, polynucleotide kinase); genomic and cDNA libraries: construction, screening and uses; cloning and expression vectors (plasmids, bacteriophage, phagmids,

DNA CO 184. Students get to know about different genetic technologies used in DNA configuration.

cosmids, artificial chromosomes;	
nucleic acid microarrays	
Unit 3: Bioremediation and	CO 185. Learners get to know about different bioremediation
ecological restoration	and phytoremediation technique and degradation pathways of
Bioremediation: Concept, types,	environmental xenobiotic.
factors, applications, advantages and	
constraints; Specific bioremediation	
technologies (prepared beds, biopiles,	
composting, bioventing, biosparging,	
pump and treat method, constructed	
wet lands, use of bioreactors for	
bioremediation. Phytoremediation –	
types, mechanism, case studies);	
Wastewater treatment: anaerobic,	
aerobic process, methanogenesis,	
bioreactors, cell and protein (enzyme)	
immobilization techniques; constructed	
wetlands; remediation of degraded	
ecosystems; advantages and	
disadvantages; degradation of	

environment:

substituted

xenobiotics

hydrocarbons,

degradative pathways.

in

hydrocarbons, pesticides, heavy metals

		Unit 4: Ecologically safe products	CO 186. This section helps learners understand the use of
		and processes	biotechnology to develop ecologically safe products for
		PGPR bacteria: biofertilizers, microbial	modern use.
		insecticides and pesticides, bio-control	
		of plant	
		pathogen, Integrated pest management;	
		development of stress tolerant plants,	
		biofuel; mining and metal	
		biotechnology: microbial	
		transformation, accumulation and	
		concentration of metals, metal	
		leaching, extraction; exploitation of	
		microbes in copper and uranium	
		extraction.	
		• Isolation and characterisation of soil	CO 187. Learners get experience with different microbial
		bacteria.	testing methods.
		• Gram staining of bacterial sample.	CO 188. Learners gain practical expertise with various organic component testing techniques.
		• Enumeration of heterotrophic bacteria from water and soil samples	component testing techniques.
		(Spread plate/pore plate technique).	CO 189. Learners gain hands-on practise recognising the
U	JG-ENVS-H-	 Determination of chlorophylls, 	different cell division phases.
	CC-P -11-	enzymes (catalase, peroxidase and	
	Practical	ascorbic acid of plant samples).	
		• Bioassay of toxic compounds by	
		enzyme assay or seed germination	
		test.	
		 Estimation of carbohydrate, protein and DNA. 	
		and DNA.	

	Study of mitotic and meotic stages	
	(A. cepa and grasshopper testis or	
	pollen)	
	Unit 1: History of life on Earth	CO 190. Students will learn the life history on Earth, i.e. how
	Paleontology and evolutionary history;	life formed and how it evolved.
	evolutionary time scale; eras, periods	CO 191. Students will learn about the human evolution.
	and epoch; major events in the	
	evolutionary time scale; origins of	
	unicellular and multi cellular	
	organisms; major groups of plants and	
	animals; stages in primate evolution	
	including Homo.	
	Unit 2: Introduction	CO 192. Students will learn the evolutionary theories and
UG-ENVS-	Lamarck's concept of evolution;	natural selection, criterion and process
CC-12-	Darwin's Evolutionary Theory:	
Evolutiona	variation, adaptation, struggle, fitness	
biology	and natural selection; Mendelism;	
	spontaneity of mutations; The	
	Evolutionary Synthesis.	
	Unit 3: Evolution of unicellular life	CO 193. Students will learn the Origin of cells and unicellular
	Origin of cells and unicellular evolution	evolution and basic biological molecules
	and basic biological molecules; abiotic	
	synthesis of organic monomers and	
	polymers; Oparin-Haldane hypothesis;	
	study of Miller; the first cell; evolution	
	of prokaryotes; origin of eukaryotic	
	cells; evolution of unicellular	

euk	aryotes; anaerobic meta	abolism,	
pho	tosynthesis and	aerobic	
met	tabolism.		
Uni	it 4: Geography of evolution	n	CO 194. Students will learn the biogeographic evidence of
Bio	geographic evidence of evo	olution;	evolution; patterns of distribution, historical factors affecting
pati	terns of distribution; hi	istorical	geographic distribution
fact	tors affecting geo	graphic	
dist	ribution; evolution of geo	graphic	
patt	terns of diversity.		
Uni	it 5: Molecular evolution		CO 195. Students will learn the molecular theories of
Neu	utral evolution; mo	olecular	evolution and origin of genes and proteins
dive	ergence and molecular	clocks;	
mol	lecular tools in phy	logeny,	
clas	ssification and identify	fication;	
pro	tein and nucleotide se	equence	
ana	lysis; origin of new gene	es and	
pro	teins; gene duplication	n and	
dive	ergence.		
Un	it 6: Fundamentals of pop	oulation	CO 196. Students will learn the concepts of populations, gene
gen	etics		pool, gene frequency
Con	ncepts of populations, gene	e pool,	CO 197. Students will learn the migration and speciation of
gen	e frequency; concepts and	rate of	species.
cha	nge in gene frequency t	through	
natu	ural selection, migration and	genetic	
drif	t; adaptive radiation; is	solating	
med	chanisms; speciation (all	lopatric,	

		sympatric, peripatric and parapatric);	
		convergent evolution; sexual selection;	
		coevolution; Hardy-Weinberg Law.	
		Field survey based analysis, exercise	CO 198. Students will learn about the Hardy-Weinberg Law
		and interpretation:	and its applications and allelic frequency determination.
		•Hardy-Weinberg Law and its	
	UG-ENVS-H-	applications.	
	CC-P-12- Practical	•Determination of change in allelic	
	Practical	frequency due to natural selection,	
		mutation and genetic drift based on	
		data provided from suggested readings (Sl. 10 & 11).	
		Unit 1: Introduction to	CO 199. Students will learn about basic terms of toxicology.
	UG-ENVS-H- DSE-01b- Ecotoxicology and	Environmental toxicology	CO 200. Students will learn about factors and impact of toxic
		Concepts of toxicants and xenobiotics:	•
		dose response relationship; EC50,	substance on nying system.
		LC50 and LD50:	
		bioaccumulation and biomonitoring of	
		chemical and biological factors	
		influencing toxicity; types of toxicants	
		and their effects in living systems.	
	Environmental	Unit 2: Toxicity of heavy metals	CO 201. Students will learn about sources, distribution and
	Health	Sources, distribution; toxic effects of	
		heavy metal (Lead, cadmium,	·
			toxicity.
		3	toxicity.
		selenium); antidotal measures, case	
		studies.	

	Unit 3: Pesticide toxicity	CO 203 . Students will learn about classification, nature,
	Pesticide classification, nature,	exposure routes of pesticides.
	exposure routes, modes of action,	CO 204. Students will learn about biological health effect of
	biological health effect; concept of	pesticides.
	pesticide resistance.	
	Unit 4: Emerging contaminants	CO 205. Students will learn about environmental threats and
	Concept, types and modes of action,	health hazards due to pesticide pollution.
	environmental threats and health	CO 206. Students will learn about environmental carcinogens
	hazards, environmental disruptors and	
	environmental carcinogens: categories,	
	actions and toxic effects.	
	Unit 5: Environmental epidemiology	CO 207. Students will learn about current impact status of
	Sources and impact on human life,	epidemics in West Bengal
	present pollution and impact status in	CO 208. Students will learn about arsenicosis, fluorosis and
	West Bengal; remedial measures;	some vector borne diseases.
	epidemiological studies with respect to	
	arsenicosis, fluorosis, vector borne	
	diseases.	
	Unit 6: Environmental Health	CO 209. Students will learn about various environmental
	Basic concepts, physiological	stress.
	responses of human to relevant stress;	CO 210. Students will learn about industrial toxicology and
	industrial toxicology and occupational	occupational health hazards and toxic manifestations
	health hazards and toxic	
	manifestations.	
UG-ENVS-H-	• Toxicity bioassay through	
DSE-P-01b-	germination (LD50)	assessment techniques.
Practical		

	 Toxicity bioassay through microbial test Epidemiological survey in arsenic affected areas. Unit 1: Waste water treatment Sources and generation of waste water; physicochemical and biological properties; primary, secondary and advanced treatment strategies 	CO 212. A field exposure can help learners to gain knowledge on survey technique and data analysis methods with brief understanding of epidemiological status of survey site. CO 213. To understand the basic concept of waste water and sources of waste water generation. CO 214. students will be able to study the properties of waste water. CO 215. Explain the various treatment processes of wastewater.
Discipline Specific Electiv 02-UG-ENVS-H DSE-02b-Wast	on environment	CO 216. Briefly study the standard for waste water discharge. CO 217. To conceptually design solid waste and their types and characteristics.
and Wastewate Management	7 31 7	CO 219. Be able to describe the effect of solid and liquid waste on water quality and aquatic life. CO 220. Students will recognize different categories of solid waste.

Unit 3: Solid waste management

Different techniques used in collection, storage, transportation and disposal of solid waste (municipal, hazardous and biomedical waste); landfill (traditional and sanitary landfill design); thermal treatment (pyrolysis and incineration) of waste material; drawbacks in waste management techniques.

CO 222. Knowledge for the protection of the environment through effective waste management techniques.

CO 223. Deep knowledge of disposal of solid waste.

CO 224. Explain various thermal treatments of waste material.

CO 225. Able to explain the drawbacks in waste management techniques

Unit 4: Industrial waste management

Types of industrial waste: hazardous and non-hazardous; effect of industrial waste on air, water and soil; industrial waste management and its importance; stack emission control and emission monitoring; effluent treatment plant and sewage treatment plant.

CO 226. Deep knowledge of Various types of industrial wastes and their direct, indirect impacts on the environment.

CO 227. To conceptually design industrial waste treatment/management processes and its importance,

CO 228. To describe stack emission control and monitoring techniques.

CO 229. Be able to illustrate Effluent treatment plants and sewage treatment plants.

Unit 5: Resource recovery

4R- reduce, reuse, recycle and recover; biological processing - composting, anaerobic digestion, aerobic treatment; reductive dehalogenation; mechanical biological treatment; green techniques for waste treatment. Waste- to- energy (WTE) - concept; refuse derived fuel (RDF);

CO 230. Knowledge to reduce, recycle and reuse of waste.

CO 231. Understanding of green techniques for solid waste disposal.

CO 232. Have an enhanced knowledge of green techniques for waste treatment.

CO 233. Explain the concept of waste to Energy transformation and various processes of WTF.

		different WTE processes: combustion,	
		pyrolysis, landfill gas (LFG) recovery;	
		anaerobic digestion; gasification.	
		Unit 6: Integrated waste	CO 234. Basic concept of Integrated waste management
		management	CO 235. Develop innovative solutions of solid waste
		Concept of Integrated waste	management.
		management; waste management	CO 236. To understand the importance of integrated waste
		hierarchy; methods and importance of	management.
		Integrated waste management.	
		Unit 7: Policies for solid waste	CO 237. Be able to make connections with Policies for
		management	management of solid waste.
		Municipal Solid Wastes (Management	CO 238. Be able to describe different eco-friendly or green
		and Handling) Rules 2000; Hazardous	products that can be use for controlling solid wastes.
		Wastes Management and Handling	
		Rules 1989; Bio-Medical Waste	
		(Management and Handling) Rules	
		1998; Ecofriendly or green products.	
		•Physico-chemical characterisation of	
		waste water (TSS, TDS, oil & grease,	characterisation of waste.
	UG-ENVS-H- DSE-L -02b-	phenolics).	CO 240. Field trip helps students to understand about waste
	Practical	•Sludge characterisation (moisture content, ash, VOC, metal etc.)	disposal site.
	Tractical	• Visit to waste disposal sites and report	
		preparation.	
VI	Core Course 13	Unit 1: Introduction	CO 241. In this section, learners get an overview of the
	(Code: UG-	Constitution of India; fundamental	fundamental structure of the Indian Constitution.
	ENVS-H-CC-13)	rights; fundamental duties; Union of	

Environmental	India, union list state list congument	
	India; union list, state list, concurrent	
Legislation And	list; legislature; state assemblies;	
Policy	judiciary; panchayats and municipal	
	bodies; National Green Tribunal.	
	Unit 2: History of environmental	CO 242. This topic helps learners to understand the evolution
	legislation and policy	of environmental laws through ancient, medieval and British
	Ancient period: worship of water, air,	raj period.
	trees; Mauryan period: Kautilya's	
	Arthashastra, Yajnavalkya smriti and	
	Charaksamhita; Medieval period:	
	forests as woodland and hunting	
	Resources during Mughal	
	reign; British India: Indian Penal Code	
	1860, Forest Act 1865, Fisheries Act	
	1897; Independent India: Van	
	•	
	Mahotsava 1950, National Forest	
	Policy 1952, Orissa River pollution and	
	prevention Act 1953.	
	Unit 3: Environmental legislation	CO 243. Learners get a brief idea about major articles depicting
	Legal definitions (environmental	environmental protectionism in Indian constitution.
	pollution, natural resource,	
	biodiversity, forest, sustainable	
	development); Article 48A (The	
	protection and improvement of	
	environment and safeguarding of	

forests and wildlife); Article 51 A	
(Fundamental duties).	
Unit 4: Legislative instruments	CO 244. Learners get a brief idea of various environmental
The Indian Forest Act 1927; The	laws in India.
Wildlife (Protection) Act 1972; The	
Water (Prevention and Control of	
Pollution) Act 1974; The Forests	
(Conservation) Act 1980; The Air	
(Prevention and Control of Pollution)	
Act 1981; The Environment	
(Protection) Act 1986; The Public	
Liability Insurance Act 1991;	
Noise Pollution (Regulation and	
Control) Rules 2000; The Biological	
Diversity Act 2002; The	
Schedule Tribes and other Traditional	
Dwellers (Recognition of Forests	
Rights) Act 2006; The National Green	
Tribunal Act 2010; scheme and	
labeling of environment friendly	
products, Ecomarks	
Unit 5: Government institutions	CO 245. Learners get a brief idea on role of different
Role of Ministry of Environment,	government organization in policy making.
Forests & Climate Change in	
environmental law and policy making;	
role of central and state pollution	

	control boards in environmental law	
	and policy making.	
	Unit 6: Case studies	CO 246. Learners get a brief idea on some case studies related
	National Green Tribunal: Aditya N	to environmental concern.
	Prasad vs. Union of India & Others;	
	Ganga Tanneries Case: M.C. Mehta vs.	
	Union of India 1988; environmental	
	education case: M.C. Mehta vs. Union	
	of India, WP 860/1991.	
	Unit 7: International laws and policy	CO 247. Learners get a brief idea about international laws and
	Ramsar convention, 1971; Stockholm	policies.
	Conference 1972; United Nations	
	Conference on Environment and	
	Development 1992; Rio de Janeiro (Rio	
	Declaration, Agenda 21); Montreal	
	Protocol 1987; Kyoto Protocol 1997;	
	Copenhagen and Paris summits.	
	Field survey based analysis, exercise	CO 248. A field exposure can help learners to gain
	and interpretation:	understanding on how environmental policies are now applied
	• Field visit for assessment of	in sectors and how widespread environmental awareness is
UG-ENVS-H-	environmental policy adoption,	today.
CC-P -13	environment safety policy adoption	
(Practical)	in industry and document	
	preparation.Survey on perception of	
	environmental laws in communities/	
	societies and document preparation.	

	Unit 1: Introduction	CO 249 Students will learn about the urbanization and urban
	Introduction to urbanization; urban	sprawl.
	sprawl and associated environmental	
	issues.	
	Unit 2: Environment in an urban	CO 250. Students will learn that how man is related to and
	setting	urban ecosystem.
	Man as the driver of urban ecosystem;	CO 251. Students will learn about the urban transformation,
	commodification of nature; metros,	increasing challenges posed by modernity for the environment
	cities and towns as sources and sinks of	and urban pollution.
	resources; resource consumption and	
CORECOURS	E- its social, cultural, economic and	
14 (Code: UG	ecological perspectives; urban	
ENVS-H-CC-1	transformation; increasing challenges	
Urban	posed by modernity for the	
Ecosystems	environment; urban pollution (air,	
	water, soil).	
	Unit 3: Urban dwelling	CO 252. Students will learn about the housing scenario across
	Housing scenario across a range of	a range of large-medium-small cities.
	large-medium-small cities; poverty and	CO 253. Students will learn about the town planning Acts and
	slums in an urban context; Town	their environmental aspects, energy consumption and waste
	planning Acts and their environmental	disposal
	aspects; energy consumption and waste	
	disposal as well as accumulation;	
	environmental costs of urban	
	infrastructure.	

Unit 4: Urban interface	e with the CO 254. Students will learn the management of urban
environment	environment, policy about it and how it can be performed
Management of urban en	environment; sustainabily.
alternative resources; pe	policy and
management decisions; urb	ban settings
as loci of sustainability;	challenges
associated with sustainability	ty and urban
future	
Unit 5: Natural spaces in a	a city CO 255. Students will learn about the natural spaces in the
Concept of 'controlled natu	ture'; scope, urban setting and role of urban green places.
importance and threats to na	nature in the CO 256. Students will learn about the urban green belt
city; organization and planni	ning of green development.
spaces such as parks, ga	gardens and
public spaces; concept of g	green belts;
urban natural forest ecosyste	tem as green
lungs	
Unit 6: Planning and envi	vironmental CO 257. Students will learn about the Urban planning and its
management	environmental aspects from historical and contemporary
Urban planning and its env	vironmental perspectives.
aspects from histori	rical and CO 258. Students will learn about the policy and planning of
contemporary perspectives;	; benefits of smart cities.
environmental ma	nanagement;
introduction to green build	dings; urban
governance; political com	
applying ecological science	ce to urban
policy and planning, smart of	cities.

	Field survey based analysis, exercise	CO 258. Students will learn to make baseline study on future
	and interpretation:	aspects of urban planning in eco-friendly manner through
	• Exercises: Students will carry out a	
	group work in which the	various execteises.
	development of the infrastructure of	
	the city of the future is explored and	
	presented. The assignment	
	concentrates on the development of	
	one infrastructure (clean water,	
	waste water or energy) in two	
	possible surroundings (newly built	
	city or transition from present to	
	future situation).	
UG-ENVS-H-	• Tutorial focusing on introducing the	
CC-P -14-	state-of-the-art technologies for	
Practical	drinking water supply, wastewater treatment, energy supply and	
	material/nutrient recycling and	
	recovery.	
	• Individual assignment the student	
	will perform a technological	
	assessment for the solution of a	
	specific urban environmental	
	problem performing basic	
	calculations on urban flows and their	
	transformations and considering the	
	sustainability outcome.	
	• Field visits to experience various	
	environmental technologies working	
	in practice.	

	Unit 1: Introduction	CO 259. Students will learn about different instruments.
	Instrumental methods for	CO 260. Students will learn about various analytical
	environmental analysis.	techniques.
	Unit 2: Principle and application	CO 261. Students will learn about principles of different
	Titrimetric, gravimetric,	Instruments.
	potentiometric, nephelometry,	CO 262. Learners will learn about applications of various
	turbidimetry, spectrophotometry,	analytical instrumants.
	spectrofluorimetry, flame photometry,	
	atomic absorption spectrometry,	
LIC ENVICE	inductively coupled plasma mass	
UG-ENVS-H DSE-03b-	spectrometry, chromatographic	
Instrumenta	techniques, gel electrophoresis, gas	
	chromatography.	
Techniques f Environment	I I nit 3. Water and Soil sampling	CO 263. Students will learn about soil sampling and sample
Analysis	techniques and sample preparation	handling methods.
Allalysis	Sampling methods, sample	CO 264. Students will learn about water sampling and sample
	preservation, storage and processing	handling methods.
	techniques.	
	Unit 4: Air quality sampling and	CO 265. Students will learn about components of air sampler
	analysis	assembly.
	Air samplers, air sampling design, air	CO 266. Students will learn about air sampling methods using
	sampling techniques and application,	different air sampler.
	biomonitoring.	
	Unit 5: Noise monitoring	CO 267. Students will learn about techniques for measurement
		of noise level

	Techniques for measurement of noise	CO 268. Students will learn about abatement and protective
	level; Abatement and protective	•
	measures	
	Unit 6: Radioactivity	CO 269. Students will learn about radioactivity detection
	Detection techniques and application.	instruments.
	_	CO 270. Students will learn about application of radioactivity
	_	detection instruments.
	• Field survey based analysis,	CO 271. The ability to handle instruments and a certain
	exercise and interpretation	comprehension of the fundamental principles governing
UG-ENV		instrument operation are acquired by learners.
DSE-P-0	instruments and document preparation.	
Praction	• Demonstration of selected	
	instruments and document	
	preparation.	
	UG-ENVS-H-DSE-L -04 Dissertation	CO 272. Students learn to apply the knowledge acquired from
	UG-ENVS-H-DSE-P -04 Practical	entire curriculum.
	_	CO 273. Baseline idea of research work obtained by the
UG-ENV		learners.
DSE-0		CO 274. Students realise the link between theory and practical
Disserta	tion	knowledge in real life situation.